Role of histone acetylation in the activity-dependent regulation of sulfiredoxin and sestrin 2.

نویسندگان

  • Francesc X Soriano
  • Sofia Papadia
  • Karen F S Bell
  • Giles E Hardingham
چکیده

Peroxiredoxins are neuroprotective antioxidant enzymes that reduce hydroperoxides and protect neurons against oxidative stress. However, they can be inactivated through hyperoxidation of their active site cysteine, an event that can take place in the brain in response to oxidative insults such as stroke and also normal aging. Synaptic activity promotes the reduction of hyperoxidized peroxiredoxins in neurons, and induces the expression of sulfiredoxin (Srxn1) and sestrin 2 (Sesn2) which have been reported to mediate this. We have investigated the importance of histone acetylation in the regulation of these genes, to understand more about how these genes are regulated by synaptic activity. We show that the sestrin 2 promoter undergoes activity-dependent histone acetylation, which contributes to its transcriptional activation. In contrast, promoter-proximal histone acetylation is not involved in the activity-dependent induction of sulfiredoxin. Nevertheless, expression of both sestrin 2 and sulfiredoxin can be induced by enhancing histone acetylation through treatment of neurons with the histone deacetylase inhibitor trichostatin A (TSA). Furthermore, protective doses of TSA inhibit the formation of hyperoxidized peroxiredoxins in neurons exposed to oxidative insults. Histone deacetylases are emerging therapeutic targets in neurodegenerative disorders associated with oxidative stress. Our results indicate that manipulating the histone acetylase-deacetylase balance in neurons may mimic the effects of synaptic activity in preventing the oxidative inactivation of peroxiredoxins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation

Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...

متن کامل

HDAC Inhibitors and Heat Shock Proteins (Hsps)

Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...

متن کامل

The effect of aspirin on the interaction of histone 05 and 05-DNA

The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...

متن کامل

P-204: Evaluation of FMR1 Gene Regulatory Region for The Epigenetic Mark of H3K9 Acetylation in Blood Cells of Patients with Diminished Ovarian Reserve Reffered to Royan Institute

Background: Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes and high FSH level, the genetic cause of which is still unknown. The association between FMR1 premutations(50-200 CGG repeats) and the premature ovarian failure( POF) disease has suggested that FMR1 gene acts as a risk factor for POF and recently for DOR p...

متن کامل

Effects of Taurine, Sestrin 2 and Phyllanthin on coronary artery diseases

Heart failure is a growing epidemic in the worldwide. Atherosclerosis is a major mechanism of cardiovascular disease including myocardial infarction and peripheral arterial disease. Moreover, it causes many diseases and deaths around the world. Atherosclerosis, like coronary artery disease (CAD), is associated with inflammation and oxidative stress. The current article has been collected the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Epigenetics

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2009